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In high Reynolds-number turbulence, local scalar turbulence structure parameters,
(C2

θ )r , local scalar variance dissipation rates, χr , and local energy dissipation rates,
εr , vary randomly in time and space. This variability, commonly referred to as
intermittency, is known to increase with decreasing r , where r is the linear dimension
of the local averaging volume. Statistical relationships between χr , εr , and (C2

θ )r
are of practical interest, for example, in optical and radar remote sensing. Some of
these relationships are studied here, both theoretically and on the basis of recent
observations. Two models for the conditionally averaged local temperature structure
parameter, 〈(C2

θ )r |εr〉, are derived. The first model assumes that the joint probability
density function (j.p.d.f.) of χr and εr is bivariate lognormal and that the Obukhov–
Corrsin relationship, (C2

θ )r = γ ε−1/3
r χr , where γ = 1.6, is locally valid. In the second

model, small-scale intermittency is ignored and C2
θ and ε are treated traditionally,

that is, as averages over many outer scale lengths, such that C2
θ and ε change only as

a result of large-scale intermittency. Both models lead to power-law relationships of
the form 〈(C2

θ )r |εr〉 = c εδ
r , where c is a constant. Both models make predictions for the

value of the power-law exponent δ. The first model leads to δ = ρxyσy/σx − 1/3, where
σx and σy are the standard deviations of the logarithms of εr and χr , respectively,
and ρxy is the correlation coefficient of the logarithms of χr and εr . This model leads
to δ = 1/3 if ρxy = 2/3 and if σx = σy . The second model predicts δ = 2/3, regardless
of whether (i) static stability and shear are statistically independent, or (ii) they
are connected through a Richardson-number criterion. These theoretical predictions
are compared to fine-wire measurements that were taken during the night of 20/21
October 1999, at altitudes of up to 500 m in the nocturnal boundary layer and the
overlying residual layer above Kansas. The fine-wire sensors were moved up and
down with the University of Colorado’s Tethered Lifting System (TLS). The data
were obtained during the Cooperative Atmosphere-Surface Exchange Study 1999
(CASES-99). An interesting side result is that the observed frequency spectra of the
logarithms of εr and χr are described well by an f −1 law. A simple theoretical
explanation is offered.

† Present address: Electrical and Computer Engineering Department, University of
Massachusetts, Knowles Building, 151 Holdsworth Way, Amherst, MA 01003-9284, USA
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1. Introduction
Atmospheric turbulence occurs at time and length scales that range over many

orders of magnitude. Obukhov (1962) suggested distinguishing between small-scale
turbulence and large-scale turbulence, where small scales are scales at which “the
hypothesis of three-dimensional isotropy is valid in a certain rough approximation”,
and large scales are those at which the fluctuations are necessarily anisotropic because
beyond a certain scale, atmospheric flow is always quasi-two-dimensional.

Now, let L be the diameter of the largest turbulent eddies that are still part of
the small-scale turbulence. That length scale is known variously as the ‘outer scale’,
‘large-eddy scale’, or ‘overturning length’. In the vicinity of the ground or a wall, L

is of the order of the distance between the observation point and the boundary. At
higher levels in the atmosphere, the small-scale turbulence does not ‘feel’ the presence
of the ground, and L is determined by the local mean vertical gradient of the potential
temperature and the local mean vertical shear of horizontal velocity.

Large-scale turbulence (mesoscale variability, gravity waves, or synoptic-scale
disturbances) is known to have drastic effects on the statistical parameters of the
small-scale turbulence. Randomness in small-scale turbulence statistics is generally
referred to as intermittency. It is important, however, to distinguish between the
intermittency that is an inherent part of small-scale turbulence (Kolmogorov 1962;
Obukhov 1962) and the intermittency that is associated with, and caused by, large-
scale variability of the flow. The problem of distinguishing between the two does
not arise in wind-tunnel experiments because large-scale turbulence simply does not
exist there. As pointed out by Obukhov (1962, p. 78): “In the study of turbulence
in wind tunnels one usually takes averages over a certain ensemble corresponding to
a time ensemble, and the averaging period is larger than the life-time of the largest
eddies. In the case of atmospheric turbulence there arise specific difficulties; so that
the life-time of the largest eddies in the atmosphere greatly exceeds, as a rule, the
time of measuring turbulent characteristics.”

In the turbulence literature, the term ‘intermittency’ has been used more broadly
than outlined above, and with different meanings that vary across authors and
disciplines. Intermittency has been defined or characterized simply as “another name
for nonstationarity” (Treviño & Andreas 2000) or as “an unexpected high probability
of large velocity fluctuations” (Boettcher et al. 2003). Sreenivasan (1999, p. S389)
defines turbulence intermittency as the non-Gaussianity of small-scale statistics:
“Roughly speaking, intermittency means that extreme events are far more probable
than can be expected from Gaussian statistics and that the probability density
functions of increasingly smaller scales are increasingly non-Gaussian . . . ”

Sreenivasan & Antonia (1997, p. 441) divide small-scale intermittency into
dissipation-scale intermittency and inertial-range intermittency: “Batchelor &
Townsend (1949) showed that the non-Gaussian behavior in the pdf of dissipation
quantities increased with decreasing scale. In a complementary sense, dissipation
quantities become increasingly non-Gaussian as the Reynolds number increases. These
are the two hallmarks of dissipation-scale intermittency. For the inertial range, since
the Reynolds number variation should be irrelevant, intermittency requires that the
pdfs of wavenumber bands show increasingly flared-out tails for increasing midband
wavenumber, or that the flatness of velocity increments increases with decreasing
scale.” Mahrt (1989) distinguishes between “small scale or microscale intermittency”
and “global intermittency”. This is exactly what we will refer to here as small-scale
intermittency and large-scale intermittency, respectively.
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For many years, clear-air Doppler radars have been used to remotely sense energy
dissipation rates and refractive-index structure parameters in the troposphere and
the stratosphere (e.g. VanZandt et al. 1978; Gage 1990; Nastrom & Eaton 1997;
Doviak & Zrnić 1993; Muschinski & Lenschow 2001). Clear-air radar data are
usually processed with averaging times ranging from minutes to hours and with
averaging volumes with diameters ranging from tens of metres to a few kilometres.
Recently, Muschinski (2004) generalized the existing theory of clear-air radio-wave
backscatter and analysed the effects of spatial and temporal variability of local
turbulence statistics within the radar’s resolution volume and during the radar’s dwell
time. There is a similar interest in small-scale intermittency in the area of optical
remote sensing (e.g. Frehlich 1992; Wheelon 2001, 2003).

In this study, we investigate both small-scale and large-scale intermittency in the
nocturnal boundary layer (NBL) and in the lower part of the residual layer (RL). We
analyse measurements collected with vertical arrays of fine-wire anemometers and
thermometers lifted to altitudes as much as 500 m above ground level. The data were
taken on 21 October 1999 during Intensive Observational Period 9 (IOP 9) of the
month-long field campaign of the Cooperative Atmosphere-Surface Exchange Study
1999 (CASES-99) conducted near Leon, Kansas (Poulos et al. 2002).

2. Small-scale turbulence and small-scale intermittency
2.1. Small-scale turbulence

One of the main goals of understanding small-scale turbulence is to establish laws
for the statistical properties of two-point velocity increments,

�u ≡ u(x ′′, t) − u(x ′, t), (2.1)

where u is the local and instantaneous velocity vector, and x ′ and x ′′ are two fixed
locations.

An important working assumption is that in a space–time domain D whose
spatial dimensions are sufficiently small, the statistical properties of �u are nearly
homogeneous, isotropic, and stationary. In other words, the statistics of �u are
assumed to be independent of time t , independent of the mid-point location
x ≡ (x ′+x ′′)/2, and independent of the orientation of the separation vector s ≡ x ′′−x ′,
such that the statistics are functions only of the magnitude s ≡ |s| of the separation
vector. Mid-point and separation coordinates had already been used by Tatarskii
(1961). The advantage of using mid-point and separation coordinates instead of using
the ‘end-point coordinates’ x ′ and x ′′ were recently discussed by Hill & Wilczak (2001).

According to classical turbulence theory (Kolmogorov 1941), any �u statistic for a
given D should depend only on the molecular kinematic viscosity ν and on the average
value of the energy dissipation rate, ε, over that specific domain D (Kolmogorov’s
first similarity hypothesis). Furthermore, in the inertial range, i.e. for r large compared
to the dissipation length, or Kolmogorov microscale,

η =

(
ν3

ε

)1/4

, (2.2)

but still small compared to the outer length scale L, any �u statistic should be
independent of ν and depend solely on ε (Kolmogorov’s second similarity hypothesis).

In a broader sense, turbulence is also randomness in the field of a scalar variable,
θ , like temperature, humidity, refractive index, etc. We refer to such turbulence as
‘scalar turbulence’ as opposed to ‘velocity turbulence’. The functional form of the
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second-order structure function of scalar increments

�θ ≡ θ(x ′′, t) − θ(x ′, t) (2.3)

in the inertial subrange was predicted by Obukhov (1949) and Corrsin (1951).

2.2. Small-scale intermittency

In their refined similarity theory, Kolmogorov (1962) and Obukhov (1962) introduced
local averages εr over (small) spheres with radius r � L. They assumed that εr is
lognormally distributed and that the variance σ 2

x of the logarithm of εr increases with
decreasing r like

σ 2
x = A + µ ln

L

r
, (2.4)

where µ is a universal constant and the coefficient A “depends on the macrostructure
of the flow” (Kolmogorov 1962, p. 83). Equation (2.4), together with the lognormality
assumption, is sometimes referred to as Kolmogorov’s third similarity hypothesis
(e.g. Sreenivasan, Antonia & Danh 1977).

Van Atta (1971) hypothesized, firstly, that local averages χr of scalar variance
dissipation rates should be lognormally distributed and that the variance σ 2

y of the
logarithm of χr increases with decreasing r:

σ 2
y = Aθ + µθ ln

Lθ

r
, (2.5)

where Lθ and µθ are the scalar counterparts of L and µ, respectively. Secondly, Van
Atta (1971) hypothesized that the joint probability of εr and χr should be bivariate
lognormal. It is natural to assume that L and Lθ are of comparable magnitude.
Relationships resulting from the joint lognormality hypothesis are summarized in
Antonia & Van Atta (1975). A review on intermittency in passive-scalar turbulence
was given by Warhaft (2000).

3. Fine-wire measurements of local dissipation rates and structure parameters:
concepts and procedures

Local dissipation rates can be retrieved from fine-wire measurements by means
of two different techniques: the direct dissipation technique and the inertial-range
technique. Both retrieval techniques rely on a number of assumptions. An outline is
given in the following.

For incompressible, Newtonian fluids at high Reynolds numbers, εr and χr are
given by

εr =

〈
ν

2

3∑
i=1

3∑
j=1

(
∂ui

∂xj

+
∂uj

∂xi

)2
〉

r

(3.1)

(e.g. Taylor 1935, equation 41 on p. 436) and

χr =

〈
2κ

3∑
i=1

(
∂θ

∂xi

)2
〉

r

(3.2)

(e.g. Sreenivasan 1996), where ui and uj are the ith and j th, respectively, components
of the fluctuating part of the velocity vector, θ is the fluctuating part of the
temperature, and κ is the molecular heat conductivity. The spatial averaging, denoted
by 〈·〉r , is performed over a domain of linear size r . Kolmogorov (1962) specified the
averaging volume as a sphere with radius r .
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With a single fine wire, however, only fluctuations in the streamwise direction can
be measured, such that (3.1) and (3.2) cannot be directly applied for two reasons:
first, a fine wire measures only fluctuations along a line, which makes averaging over
volumes impossible; second, (3.1) and (3.2) also involve gradients in the transverse
directions, which cannot be measured with a single fine wire.

It is commonly assumed that the shape of the averaging volume is of minor
importance (Monin & Yaglom 1975, p. 591) and that it is only the linear dimension r

of the averaging domain that matters. Under these assumptions, volume averaging can
be replaced by line averaging. Moreover, it is commonly assumed that the fluctuations
are statistically isotropic at scales comparable to the Kolmogorov length, which makes
direct measurement of the transverse gradients unnessary because in that case (3.1)
and (3.2) are equivalent to

εr = 15ν

〈(
∂u1

∂x1

)2
〉

r

(3.3)

(first derived by Taylor 1935, equation 45 on p. 437) and

χr = 6κ

〈(
∂θ

∂x1

)2
〉

r

, (3.4)

respectively, where ‘1’ stands for the streamwise direction.
Because fine wires measure time series and not spatial series, a local version of

Taylor’s frozen-turbulence hypothesis has to be used to retrieve streamwise gradients
from time derivatives:

εr = 15
ν

U 2
r

〈(
∂u1

∂t

)2
〉

τ

(3.5)

and

χr = 6
κ

U 2
r

〈(
∂θ

∂t

)2
〉

τ

. (3.6)

Here, Ur is the true air speed (i.e. the magnitude of the sensor’s velocity vector
relative to the air) averaged over the time period τ . For a given τ , we have r = Urτ .
If the fluctuations of the true air velocity vector during τ are significant compared
to Ur , then Taylor’s hypothesis in its original form (Taylor 1938) may lead to serious
overestimations of 〈(∂u1/∂x1)

2〉 and 〈(∂θ/∂x1)
2〉 and, therefore, of energy and scalar

variance dissipation rates. Equations to quantify and correct biases resulting from the
original, i.e. ‘global’, Taylor hypothesis (Taylor 1938) have been worked out, e.g., by
Heskestad (1965), Lumley (1965) and Wyngaard & Clifford (1977). Wyngaard &
Clifford (1977) found that global energy dissipation rates are overestimated by
15〈u2

1〉/U 2 and global temperature variance dissipation rates by 9〈u2
1〉/U 2, where

U is the global mean true air speed and 〈u2
1〉 is the global variance of the streamwise

velocity. These results have been confirmed by Hill (1996).
Correspondingly, the local version of Taylor’s hypothesis, which is also known

as the ‘random Taylor hypothesis’ (e.g. Tennekes 1975) or ‘sweeping decorrelation
hypothesis’ (Praskovsky et al. 1993), leads to overestimations by 15〈u2

1〉r/U 2
r in εr

and by 9〈u2
1〉r/U 2

r in χr , where 〈u2
1〉r is the local variance of the streamwise velocity.

Because 〈u2
1〉r/〈u2

1〉 is of order (r/L)2/3, the biases resulting from the local Taylor
hypothesis are only of order 15〈u2

1〉(r/L)2/3/U 2 and 9〈u2
1〉(r/L)2/3/U 2, respectively.
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In summary, (3.5) and (3.6) rely on the following three assumptions: (i) negligibility
of the shape of the local averaging volume; (ii) statistical isotropy at length scales
comparable to the Kolmogorov length; and (iii) the validity of the local Taylor
hypothesis. Although errors resulting from violations of one or more of these three
assumptions may lead to significant biases, measurements of εr and χr by means
of (3.5) and (3.6) are usually, and somewhat misleadingly, called ‘direct’ dissipation
measurements.

Direct dissipation measurements in high-Reynolds-number flows require extremely
high spatial and temporal resolution. According to Kuznetsov, Praskovsky &
Sabelnikov (1992, p. 602), the spatial resolution has to be 2η or better, which translates
into the following requirement for the time resolution:

�t �
2

Ur

(
ν3

εr

)1/4

. (3.7)

(Muschinski (1996) pointed out that there is a relationship between this ‘2η criterion’
and the requirement that the Smagorinsky coefficient in large-eddy simulations must
exceed a certain critical value.) In the NBL, a typical wind speed is 10 m s−1 and one
has to be prepared for local values of the energy dissipation rate as large as 0.1 m2 s−3.
With ν = 1.5 × 10−5 m2 s−1 this leads to 2η = 0.86mm and �t � 86 µs. That is, the
sampling rate has to be 11.7 kHz or higher. Although this is feasible – Kuznetsov
et al. (1992), for example, sampled wind-tunnel turbulence at 32 kHz – the difficulties
associated with direct dissipation measurements in the open atmosphere, particularly
onboard airborne platforms, usually do not justify the expenses.

As an alternative to the direct dissipation technique, one can retrieve dissipation
rates with the inertial-range technique. As described in the following, local structure
parameters are extracted from the inertial subrange of the measured spectra, and
dissipation rates are then computed from the structure parameters.

Local structure functions for streamwise velocity and for temperature are defined
by

D
(r)
11 (s) = 〈[u(x + s/2) − u(x − s/2)]2〉r (3.8)

and

D
(r)
θθ (s) = 〈[θ(x + s/2) − θ(x − s/2)]2〉r , (3.9)

respectively. Here, s is the separation in the streamwise direction, and 〈·〉r means that
the structure functions are estimated from spatial series of length r . In the inertial
range, the structure functions follow the two-thirds laws

D
(r)
11 (s) =

(
C2

u

)
r
s2/3 (3.10)

and

D
(r)
θθ (s) =

(
C2

θ

)
r
s2/3, (3.11)

where (C2
u)r is the local structure parameter of streamwise velocity and (C2

θ )r is
the local temperature structure parameter. The corresponding local, one-sided, one-
dimensional, streamwise wavenumber spectra are

F
(r)
11 (k1) =

2

3�(1/3)

(
C2

u

)
r
k

−5/3
1 (3.12)

and

F
(r)
θθ (k1) =

2

3�(1/3)

(
C2

θ

)
r
k

−5/3
1 , (3.13)
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where 2/3�(1/3) = 0.2489. Inertial-range theory for velocity turbulence (Kolmogorov
1941; Obukhov 1941a , b) and for scalar turbulence (Obukhov 1949; Corrsin 1951)
leads to

F
(r)
11 (k1) = α1ε

2/3
r k

−5/3
1 (3.14)

and

F
(r)
θθ (k1) = γ ε−1/3

r χrk
−5/3
1 . (3.15)

The Kolmogorov coefficient α1 is quasi-universal and has a value close to 0.5 (Yaglom
1981; Sreenivasan 1995; Gotoh, Fukayama & Nakano 2002). The Obukhov–Corrsin
coefficient γ is also quasi-universal and has a value close to 0.4 (Sreenivasan 1996).
This leads to (

C2
u

)
r
= 2.0 ε2/3

r (3.16)

and (
C2

θ

)
r
= 1.6 ε−1/3

r χr , (3.17)

respectively.
Usually, the local wavenumber spectra F

(r)
11 (k1) and F

(r)
θθ (k1) are not directly measured

but are, by means of the local Taylor hypothesis, obtained from the one-sided, local
frequency spectra S

(r)
11 (f ) and S

(r)
θθ (f ). The relationships are

F
(r)
11 (k1) =

Ur

2π
S

(r)
11 (f ) (3.18)

and

F
(r)
θθ (k1) =

Ur

2π
S

(r)
θθ (f ), (3.19)

respectively, where

f =
Ur

2π
k1 (3.20)

is frequency.
The inertial-range technique relies on the following assumptions: (i) negligibility of

the shape of the local averaging volume; (ii) statistical isotropy in the wavenumber
range within which the model spectrum is fitted to the measured spectrum; (iii) the
existence of inertial subranges in the velocity and temperature fields; (iv) the assump-
tions that the inertial-subrange theories are locally valid and that the Kolmogorov
and Obukhov–Corrsin coefficients are universal and known; and (v) the validity of
the local Taylor hypothesis.

The εr and χr data that will be analysed in the following were obtained with
the inertial-range technique. The measured spectra were fitted to refined models for
F

(r)
11 (k1) and F

(r)
θθ (k1), respectively. These models account for the ‘Hill bump’ (Hill 1978)

in the scalar spectrum, the drop-off of spectral density at wavenumbers where dis-
sipation is no longer negligible, and white noise in the sensors. A detailed description
of the models and the estimation algorithms was given by Frehlich et al. (2003).

Because the measurements were made in the stably stratified atmosphere, the
turbulence intensities

√
〈u2

1〉r/Ur were very small compared to 1, such that errors
caused by the local Taylor hypothesis were negligible and no correction was made.

4. Two theoretical models of conditionally averaged local turbulence statistics
One purpose of this study is to analyse and theoretically explain observations

of 〈(C2
θ )r |εr〉, that is, of conditional averages of (C2

θ )r for fixed values of εr . We
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will see that the observed values of 〈(C2
θ )r |εr〉 are proportional to εδ

r , where δ is
a numerical exponent. The main two questions that we will address are: First,
is the power-law behaviour of 〈(C2

θ )r |εr〉 a consequence of the lognormality of
small-scale intermittency statistics, or can it be explained within the framework
of classical concepts of turbulence? Second, what is the physics behind the power-law
exponent δ?

We will present two different theoretical models of 〈(C2
θ )r |εr〉. The first model builds

on the joint lognormality assumption for small-scale intermittency. The second model
ignores small-scale intermittency entirely and, instead, explains 〈C2

θ |ε〉 on the basis of
simple mixing-length arguments. (Note that in the second scenario we have suppressed
the suffix r because, in that case, the size of the averaging volume plays no role in
the theory. It is only assumed that the averaging volume is large compared to L.)

Although these two theoretical concepts have very little in common, both lead to
power laws for 〈(C2

θ )r |εr〉 and 〈C2
θ |ε〉, respectively.

4.1. The small-scale intermittency model

Let us assume that the joint lognormality hypothesis (Van Atta 1971; Antonia & Van
Atta 1975) is valid, such that the joint probability density function (j.p.d.f.) of χr and
εr is

p (εr, χr ) =
1

2πεrχrσxσy

√
1 − ρ2

xy

exp




−

x2

σ 2
x

− 2ρxy

x

σx

y

σy

+
y2

σ 2
y

2
(
1 − ρ2

xy

)



, (4.1)

where

x = ln
εr

εr

(4.2)

is the (natural) logarithm of the normalized energy dissipation rate εr (εr is chosen
such that 〈ln(εr/εr )〉 = 0), with σx as the standard deviation of x,

y = ln
χr

χr

(4.3)

is the logarithm of the normalized temperature variance dissipation rate, χr (χr is
chosen such that 〈ln(χr/χr )〉 = 0), with σy as the standard deviation of y, and

ρxy =
〈xy〉
σxσy

(4.4)

is the correlation coefficient of x and y.
Let us follow Peltier & Wyngaard (1995, p. 3642) and assume that the Corrsin

(1951) relationship,

C2
θ = γ ε−1/3χ, (4.5)

is locally valid, such that (
C2

θ

)
r
= γ ε−1/3

r χr , (4.6)

where the Obukhov–Corrsin coefficient γ is assumed to have a universal value close
to 1.6, and that γ does not vary with r; see also (3.17).
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The conditional average of (C2
θ )r for a fixed value of εr is

〈(
C2

θ

)
r

∣∣εr

〉
=

∫
p(χr, εr )γ ε−1/3

r χr dχr∫
p(χr, εr ) dχr

, (4.7)

which gives (see Appendix A)

〈(
C2

θ

)
r

∣∣εr

〉
= γχrε

−1/3
r exp

[
1 − ρ2

xy

2
σ 2

y

] (
εr

εr

)ρxyσy/σx

. (4.8)

That is, we have the power law 〈(
C2

θ

)
r

∣∣εr

〉
∝ εδ

r (4.9)

with the exponent, or ‘logarithmic slope’,

δ = ρxy

σy

σx

− 1

3
. (4.10)

As described in § 3, the primary observables obtained with the inertial-range technique
are εr and (C2

θ )r . Therefore, it is more natural to express 〈(C2
θ )r |εr〉 in terms of (C2

θ )r
and εr statistics, rather than in terms of χr and εr statistics. In logarithmic notation,
the Obukhov–Corrsin relation is z = −x/3 + y, where

z = ln

(
C2

θ

)
r(

C2
θ

)
r

(4.11)

is the logarithm of the normalized temperature structure parameter, where (C2
θ )r is

chosen such that 〈z〉 = 0, and where σz is the standard deviation of z. It is known
that x and z = ax + by (with real numbers a and b) are jointly normal if x and
y are jointly normal (e.g. Davenport & Root 1958, p. 151). Therefore, (C2

θ )r and εr

are jointly lognormal if χr and εr are jointly lognormal. Based on the same dataset
that we will analyse in the following, Frehlich et al. (2004) have shown that joint
lognormality for (C2

θ )r and εr is a good approximation in the shear region of the
nocturnal low-level jet.

With (A 14), we obtain

〈(
C2

θ

)
r

∣∣εr

〉
=

(
C2

θ

)
r
exp

[
1 − ρ2

xz

2
σ 2

z

] (
εr

εr

)ρxzσz/σx

, (4.12)

where ρxz is the correlation coefficient of the logarithms of (C2
θ )r and εr . Therefore,

the slope in terms of inertial-range measurables is

δ = ρxz

σz

σx

. (4.13)

From (2.4) and (2.5) we find that

σy

σx

=

√
Aθ + µθ ln(Lθ/r)

A + µ ln(L/r)
. (4.14)

For r � L and r � Lθ , the ratio σy/σx approaches the asymptotic value
√

µθ/µ.
Antonia & Van Atta (1975) hypothesized that µθ ≈ µ. In that case, σy/σx ≈ 1, and
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because the correlation coefficient ρxy cannot exceed 1, δ cannot exceed the value
2/3. This argument, however, is valid only if r is ‘deep in the inertial range’, such
that r/L � 1. Also, one has to keep in mind that the ratios Lθ/r and L/r enter only
logarithmically in the expression for σy/σx , such that unrealistically large values for
Lθ/r and L/r may have to be assumed to infer that σy/σx is close to one. Therefore,
the result that δ cannot exceed the value 2/3 has to be taken with caution, particularly
since little is known about the magnitude of the coefficients A and Aθ .

Antonia & Van Atta (1975, p. 280) argued that in order to be consistent with the
r2/3 dependence of the second-order scalar structure function (i.e. of 〈(�θ)2〉), ρxy is
required to be equal to 2/3. With the additional assumption σx = σy , this leads to
a power-law exponent δ = 1/3. We will return to these issues when we discuss the
results from the fine-wire measurements.

4.2. The large-scale intermittency model

In micrometeorology, it is a traditional working assumption that estimates of low-
order turbulence statistics like variances and structure parameters are statistically
stable if the length of the time series from which the statistics are estimated is at
least 10 min or so. The underlying assumption is that there is a sufficiently clear
scale separation between small-scale turbulence and large-scale turbulence. This scale
separation is also known as the ‘mesoscale gap’ or ‘spectral gap’ (Van der Hoeven
1957); see also Lumley & Panofsky (1964, pp. 42ff.), Fiedler & Panofsky (1970), and
Mahrt, Moore & Vickers (2001). Recently, Vickers & Mahrt (2003) have described
a ‘co-spectral gap,’ which they found in spectra of turbulent fluxes measured during
CASES-99.

Let us denote with σ 2
u and σ 2

θ the variances of streamwise velocity and temperature,
respectively, associated with three-dimensional turbulence. Let us assume that the
structure functions D11(s) and Dθθ (s) follow the inertial-range laws (3.8) and (3.9)
for separations s up to some outer scales Lu and Lθ , respectively, and that for
larger separations the structure functions approach the constant values 2σ 2

u and
2σ 2

θ , respectively. It is natural to define Lu and Lθ as the separations at which the
inertial-range asymptotes and the constant asymptotes intersect, such that

C2
uL

2/3
u = 2σ 2

u (4.15)

and

C2
θ L

2/3
θ = 2σ 2

θ . (4.16)

Now, we follow Prandtl (1925) and define a velocity mischungsweglänge, or velocity
mixing length, lu and a scalar mixing length lθ such that the magnitude of the
systematic change across the mixing length is equal to the standard deviation
associated with the turbulent fluctuations:∣∣∣∣∂U

∂z

∣∣∣∣ lu = σu (4.17)

and ∣∣∣∣∂Θ

∂z

∣∣∣∣ lθ = σθ . (4.18)

Here, ∂U/∂z and ∂Θ/∂z are the vertical gradients of mean velocity and the mean
potential temperature, respectively.
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After combining these last four equations and eliminating σu and σθ , we obtain a
relationship between C2

u and C2
θ :

C2
θ =

L2/3
u l2θ

L
2/3
θ l2u

(∂Θ/∂z)2

(∂U/∂z)2
C2

u, (4.19)

or

C2
θ = CKab ε2/3, (4.20)

where

a ≡ L2/3
u l2θ

L
2/3
θ l2u

(4.21)

and

b ≡
(

∂Θ
∂z

)2

(
∂U
∂z

)2
(4.22)

are parameters that are allowed to vary randomly as a result of large-scale
intermittency, and where CK = 2.0 is the coefficient in (3.16).

Here, we consider two special cases: first, the parameter

q ≡ CKab =
L2/3

u l2θ

L
2/3
θ l2u

(∂Θ/∂z)2

(∂U/∂z)2
(4.23)

is statistically independent of ε; second, shear and stratification are coupled through
the Richardson criterion.

If q is statistically independent of ε, we have pqε(q, ε) = pq(q)pε(ε), where pqε(q, ε)
is the j.p.d.f. of q and ε, pq(q) is the p.d.f. of q , and pε(ε) is the p.d.f. of ε. Therefore,

〈
C2

θ

∣∣ε〉 ≡

∫
pqε(q, ε)C2

θ (q, ε) dq∫
pqε(q, ε) dq

=

∫
pq(q)pε(ε)qε2/3 dq∫

pq(q)pε(ε) dq

, (4.24)

and we obtain immediately 〈
C2

θ

∣∣ε〉 = 〈q〉ε2/3. (4.25)

That is, the slope is δ = 2/3 if q is statistically independent of ε.
In the second scenario, we assume that the turbulence is in ‘Richardson equilibrium’

everywhere in the space–time window under consideration. That is, the statistical
ensemble is assumed to contain only combinations of mean shear ∂U/∂z and mean
stratification ∂Θ/∂z that satisfy the Richardson criterion

Ric =
g

Θ

∂Θ/∂z

(∂U/∂z)2
. (4.26)

Here, Ric is a critical Richardson number, which we assume to have a universal value
close to its traditional value 1/4, g is acceleration due to gravity, and Θ is the mean
potential temperature at the altitude of interest.

Solving (4.26) for (∂U/∂z)2 and inserting into (4.19) leads to

C2
θ = aRic

Θ

g

∂Θ

∂z
C2

u (4.27)
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or

C2
θ = aRicCK

Θ2

g2
N2ε2/3, (4.28)

where

N =

√
g

Θ

∂Θ

∂z
(4.29)

is the Brunt–Väisälä frequency.
The coefficients CK and Ric and the parameter g/Θ may be considered as constants.

Furthermore, let us follow conventional wisdom and assume that all four length scales
are of order L, such that a may also be treated as a quasi-universal coefficient. Then
the coefficient aRicCK is also a constant of order unity. If N is statistically independent
of ε, which is the case if fluctuations in ε result from changes in shear, rather than
from changes in thermal stability, we find

〈
C2

θ

∣∣ε〉 = aRicCK

Θ2

g2
〈N 2〉ε2/3. (4.30)

That is, the large-scale intermittency model predicts an ε2/3 law for 〈C2
θ |ε〉, regardless

of whether (i) shear and stratification are statistically independent, or (ii) shear and
stratification ‘track’ each other because they are deterministically connected through
the Richardson criterion.

5. Experimental setup and meteorological situation
5.1. CIRES tethered lifting system (TLS) and turbulence sensors

The observations reported here were obtained from high-resolution in-situ turbulence
observations in the lowest few hundred metres of the night-time atmosphere
approximately 40 km east of Wichita, Kansas, during the Cooperative Atmosphere-
Surface Exchange Study (CASES-99). CASES-99 was designed to study the structure
and dynamics of the night-time stable boundary layer (Poulos et al. 2002). In situ
data were recorded using the Cooperative Institute for Research in Environmental
Sciences (CIRES) Tethered Lifting System (TLS), which employs either a kite or
an aerodynamic balloon (kites for moderate-to-strong wind conditions; balloons for
low wind conditions) to carry a suite of lightweight instruments from the ground up
through the first few kilometres of the atmosphere (Balsley, Jensen & Frehlich 1998;
Muschinski et al. 2001; Balsley et al. 2003; Frehlich et al. 2003).

For CASES-99, the TLS instrumentation included up to five ‘turbulence payloads’
(TPs) separated vertically by pre-selected spacings. The TPs could be attached above
or below the basic meteorological payload (BMP). The measurements collected with
the TPs were calibrated and converted into accurate turbulence data only after the
field campaign. The BMP consisted of a Vaisala RS-80 radiosonde and a Tmax-board
interface, and its main purpose was to provide real-time data of pressure, wind speed
and direction, and temperature, thereby enabling scientists and technicians on the
ground to respond to the ever-changing structure and dynamics of the NBL and to
move the TPs up and down as required. None of the data collected with the BMP
were used for the calibration of the temperature and velocity data measured with
the TPs. After the field campaign, the turbulence data obtained from each of the
five TPs were calibrated independently from the BMP and independently from each
other. The pressure data from the BMP were used to reconstruct the time series of
the altitudes of each TP.
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Figure 1. Sketch of the CIRES Tethered Lifting System (TLS), carrying a vertical array of
four turbulence sensors (A, B, C, and D) and the basic meteorological payload (BMP) up to
altitudes of 500m above ground level (AGL).

Each TP archived data measured with both cold-wire and hot-wire sensors. The
cold- and hot-wire data were sampled at 200 Hz. Each TP also carried conventional
low-frequency sensors (e.g. a Pitot tube, a solid-state temperature sensor, and a piezo-
electric pressure sensor) for sampling wind speed, temperature, and pressure, along
with a 3-axis tilt sensor and a magnetic compass. Separate archiving for each TP was
accomplished using onboard digital flash-memory storage, with data downloads to
disk occurring when the packages were brought down to the ground at the end of
each night of operation. Figure 1 is a sketch of the TLS and the sensor-array in the
configuration of the CASES-99 deployment during the night of 20/21 October 1999.
During that night, the TLS was operated with a kite, and the sensor array consisted
of the four TPs A, B, C, and D (from bottom to top), and the BMP. The vertical
spacing between the turbulence payloads was 6m.

The last step of the calibration procedure was to ‘merge’ the low- and high-frequency
data measured with each TP into 200 Hz time series of temperature and streamwise
velocity. This procedure and the specifications of the individual sensors are described
in detail in Frehlich et al. (2003). The merged time series inherit the high long-term
stability of the low-frequency sensors and the excellent sensitivity and short response
times of the fine-wire sensors. The absolute accuracy of the merged temperature
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and velocity data is better than 0.5 K and 1 m s−1, respectively. The cold and hot
wires were operated with low-pass filters with 3 dB cutoff frequencies of 500 Hz and
2 kHz, respectively. Although no anti-aliasing filter was used, the uncorrelated noise
standard deviations in the temperature and velocity samples were as small as 1 mK
and 1.7 mm s−1, respectively. These estimates were obtained from the spectra shown
in figures 8 and 9 in Frehlich et al. (2003).

Consecutive one-second periods of temperature and streamwise velocity fluctuations
sampled at 200 Hz were spectrally analysed to produce estimates of (C2

θ )r and
εr , respectively, by means of the inertial-range technique described in § 3. The
sampling uncertainty of these 1 s estimates is better than 15%, which implies a 15%
accuracy for (C2

θ )r and 22.5% accuracy for εr ; see Frehlich et al. (2003) for further
details.

As described in § 3, the local Taylor hypothesis was used. Because the averaging
time τ is related to the averaging length r via r = Urτ , a fixed averaging time (τ = 1 s)
leads to a changing r if the wind speed changes. Because in the data set Ur ranged
between about 5 m s−1 and 13 m s−1, r varied between 5 m and 13 m. The variances
σ 2

x and σ 2
z are expected to increase with decreasing r , such that the sections with low

wind speeds should reveal larger values of σ 2
x and σ 2

z than the sections with higher
wind speeds. However, since σ 2

x and σ 2
y are expected to vary only with the logarithm

of r , we neglect this effect.

5.2. Meterological situation

Figure 2 shows three vertical profiles of wind speed and temperature, respectively,
observed with the TLS during three ascents. The first ascent (20:58 LST to 21:12
LST) reached an altitude of 340 m, the second (22:40 LST to 23:04 LST) reached
330 m, and the third ascent (01:10 LST to 01:31 LST) reached 450 m. All data points
shown here are averages over 1 min. That is, a typical ascent rate was 20 mmin−1, or
about 0.3 m s−1.

The dynamics in the lowest 200 m AGL were dominated by a low-level jet with
a wind speed maximum between 12 m s−1 and 14 m s−1 at altitudes around 150 m
(figure 2a). After midnight, the intensity of the jet as well as the magnitudes of the
shear both below and above the the jet decreased significantly, which led to a drastic
reduction of turbulence production in the upper part of the NBL. As a result, a very
sharp inversion at about 190 m was formed. This inversion marked the top of the
NBL. As documented by Balsley et al. (2003), the thickness of this inversion was as
small as 5 cm. The temperature change across these 5 cm was about 2 K.

As can be seen in figure 2(b), the thermal stratification in the NBL was rather strong,
with ∂Θ/∂z ≈ 0.05 Km−1, which is five times as much as in an isothermal atmosphere.
During the second ascent, the shear in the lowest 100 m was 0.10 s−1 and the potential
temperature gradient was 0.04 Km−1, resulting in a gradient Richardson number of
0.13 below the jet, about half the traditional value of the critical Richardson number,
0.25. That is, the NBL below the jet was dynamically unstable and turbulent, also
later in the night, which is evident from the fairly intense turbulence, as will be
documented in the following. During the night, the NBL cooled down with typical
rates of 1Kh−1.

In the residual layer above the NBL top, thermal stratification and wind shear were
much less than in the NBL. Gradient Richardson numbers (estimated from altitude
intervals of 20 m or so) in the residual layer were typically much larger than 0.25.
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Figure 2. Vertical profiles of 1min averages of (a) the wind speed and (b) the potential
temperature. Data were taken with sensor C during three different ascents. The wind speed
maximum associated with the low-level jet was at about 150m AGL. The top of the nocturnal
boundary layer (NBL) was between 150 and 200m AGL. Thermal stratification (b) was
strongly stable in the NBL and weakly stable in the overlying residual layer.

6. Observations
6.1. Time series

Figure 3 gives an overview of the measurements taken with sensor C during the
night of 20/21 October 1999. Ten-hour time series of 1 s estimates of the following
quantities are shown: (a) the sensor altitude h above ground level; (b) the wind
speed u; (c) the air temperature T ; (d ) the local energy dissipation rate εr ; and
(e) the local temperature variance dissipation rate χr . In figure 3(a), three episodes
are marked: NBL, for ‘nocturnal boundary layer’, between 03:00 and 05:00 LST at
altitudes between 52 m and 74 m AGL; RL, for ‘residual layer’, between 21:20 and
22:20 LST at altitudes between 167 m and 224 m AGL; and AD, for ‘ascent/descent’,
between 01:10 and 01:50 LST at altitudes between 32 m and 452 m AGL. The NBL
and RL episodes were chosen because the sensors were ‘parked’ at roughly constant
height during those episodes, and the observed fluctuations were nearly statistically
stationary. The AD episode consists of two vertical soundings of the nocturnal
boundary layer and the lower residual layer.

Time series measured during the episodes NBL, RL, and AD are shown in more
detail in figures 4, 5, and 6, respectively.
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Figure 3. Overview of the turbulence measurements collected with sensor package C during
the night of 20/21 October 1999. (a) Sensor altitude above ground level (AGL); (b) wind speed
(1 s averages); (c) air temperature (1 s averages); (d) local energy dissipation rate, εr , estimated
from 1 s time series of wind speed fluctuations sampled at 200Hz; (e) local temperature
structure parameter, (C2

θ )r , estimated from 1 s time series of temperature fluctuations sampled
at 200Hz. Detailed time series measured during the episodes annotated in (a) as NBL (for
‘nocturnal boundary layer’, from 03:00 LST to 05:00 LST), as RL (for ‘residual layer’, from
21:20 LST to 22:20 LST), and as AD (for ‘ascent/descent’, from 01:10 LST to 01:50 LST) are
shown in figures 4(a–e), 5(a–e), and 6(a–e), respectively.
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Figure 4. Same as figure 3(a–e) but for the NBL (nocturnal boundary layer) episode
between 03:00 LST and 05:00 LST.

6.2. Velocity and temperature spectra

Frequency spectra Suu(f ) and Sθθ (f ) of wind speed and temperature fluctuations
measured during the NBL episode are shown in figure 7(a). Both Suu(f ) and Sθθ (f )
show two regimes in which the spectral densities vary with f −5/3. Both in Suu(f ) and
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Figure 5. Same as figure 3 (a–e) but for the RL (residual layer) episode between
21:20 LST and 22:20 LST.

Sθθ (f ), the two f −5/3 regimes are separated by a plateau. Figure 7(b) shows the same
data as in figure 7(a) but in ‘area-preserving’ representation. That is, figure 7(b) shows
f Suu(f ) and f Sθθ (f ) in a semilogarithmic diagram.
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Figure 6. Same as figure 3 (a–e) but for the AD (ascent/descent) episode between
01:10 LST and 01:50 LST.

In both Suu(f ) and Sθθ (f ), the plateau ranges from 0.003 Hz (5.5 min) to 0.03 Hz
(0.5 min), corresponding to wavelengths between 230 m and 2.3 km. Note that
the frequencies of the minima and maxima in the area-preserving spectra shown
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Figure 7. (a) Frequency spectra of wind speed and temperature fluctuations in
double-logarithmic representation. The data were collected during the NBL episode (from
03:00 LST to 05:00 LST). Two regimes showing a −5/3 power law are separated by a plateau
between 0.005Hz and 0.02 Hz, corresponding to time scales ranging from 50 s to 3.3 min
and (at a mean wind speed of U = 7m s−1) to length scales between 350 m and 1400m.
(b) Same data as in (a) but in ‘area-preserving’ representation. The high-frequency and
low-frequency boundaries of the plateau in (a) coincide with the spectral peak and the spectral
gap, respectively, in (b).

in figure 7(b) coincide with the frequencies at the lower and upper, respectively,
boundaries of the plateaux in figure 7(a), as expected.

The wavelength corresponding to the high-frequency end of the plateau marks the
large-scale boundary of the inertial subrange of the three-dimensional, Kolmogorov-
type turbulence. Muschinski & Roth (1993) argued that at an altitude h the largest
features that could be statistically isotropic in three dimensions cannot have a radius
larger than h, or a diameter larger than 2h, or a wavelength larger than

λm = 4h. (6.1)

The data presented in figure 7 were taken at altitudes around 65 m AGL. This leads to
λm = 260 m and agrees well with the observed wavelength of 230 m. More discussion
on this issue is given in § 7.1.

6.3. Scatter diagrams of εr and (C2
θ )r ; conditional averages of (C2

θ )r for specified
values of εr

The local energy dissipation rates, εr , and local temperature structure parameters,
(C2

θ )r , which were shown as time series in figures 3–6, are presented in the form of
scatter diagrams in figures 8(a), 9(a), 10(a), and 11(a), respectively. Figures 8(b), 9(b),
10(b), and 11(b) show, for the respective ensemble (the entire night, NBL, RL, or AD),
conditional averages 〈(C2

θ )r |εr〉 as functions of εr . The dots are linear averages of (C2
θ )r

computed for specific εr bins, each of which has a width of 1/20 decade. The lines are
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Figure 8. (a) Scatter diagram of all (C2
θ )r and εr values measured with sensor C during the

night of 20/21 October 1999. The plot contains 33 660 data points. Statistical parameters:
σx = 1.86, σz = 1.82, ρxz = 0.70. (b) Conditional averages of (C2

θ )r for specified values
of εr . The width of the εr bins is 1/20 decade. The solid line is the model resulting from
(4.12), which assumes joint lognormality of (C2

θ )r and εr . The slope predicted from (4.12) is
δ = ρxzσz/σx = 0.69.
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Figure 9. Same as figure 8(a, b) but for the NBL (nocturnal boundary layer) episode between
03:00 LST and 05:00 LST. The scatter diagram (a) contains 6859 data points. Statistical
parameters: σx = 0.93, σz = 1.09, ρxz = 0.32. The slope predicted from (4.12) is δ = 0.38.
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Figure 10. Same as figure 8(a, b) but for the RL (residual layer) episode between 21:20 LST
and 22:20 LST. The scatter diagram (a) contains 3430 data points. Statistical parameters:
σx = 0.83, σz = 1.01, ρxz = 0.38. The slope predicted from (4.12) is δ = 0.46.
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Figure 11. Same as figure 8(a, b) but for the AD (ascent/descent) episode between 01:10
LST and 01:50 LST. The scatter diagram (a) contains 2284 data points. Statistical parameters:
σx = 2.51, σz = 2.29, ρxz = 0.80. The slope predicted from (4.12) is δ = 0.72.

the theoretical power laws obtained from (4.12) with the respective values of (C2
θ )r , εr ,

σx , σz, and ρxz. Table 1 gives an overview of the statistical parameters characterizing
the four ensembles. Relationships between these statistical parameters are derived in
Appendix B.
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(C2
θ )r

[
K2 m−2/3

]
εr [m2 s−3] σx σz ρxz σy ρxy σy/σx δ

all 4.3 × 10−4 4.3 × 10−4 1.86 1.82 0.70 2.30 0.83 1.24 0.69
NBL 8.3 × 10−4 9.7 × 10−4 0.93 1.09 0.32 1.23 0.54 1.32 0.38
RL 1.9 × 10−4 4.0 × 10−4 0.83 1.01 0.38 1.14 0.58 1.37 0.46
AD 2.1 × 10−4 1.8 × 10−4 2.51 2.29 0.80 3.00 0.89 1.19 0.72

Table 1. Statistical parameters characterizing the four data ensembles ‘all’ (20:12 LST to 06:01
LST), NBL (03:00 to 05:00 LST), RL (21:20 to 22:20 LST), and AD (01:10 to 01:50 LST).
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Figure 12. Same as figure 7 but showing spectra of x (the logarithm of εr ), y (the logarithm of
χr , calculated from εr and (C2

θ )r through the Obukhov–Corrsin relation), and z (the logarithm
of (C2

θ )r ). As in figure 7, data were collected during the NBL episode. At high frequencies,
the spectra of x, y, and z show a f −1 power law, in agreement with Kolmogorov’s (1962)
lognormality hypothesis.

6.4. Spectra of the logarithms of εr , χr , and (C2
θ )r

Figures 12 and 13 show frequency spectra of x, y, and z (i.e. of the centralized
logarithms of εr , χr , and (C2

θ )r ) observed during the NBL and RL episodes,
respectively. At frequencies higher than about 0.03 Hz (wavelengths shorter than
230 m), all spectra follow (approximately) an f −1 power law.

7. Discussion
7.1. Three-dimensional and quasi-two-dimensional regimes in stratified shear flow

The velocity and temperature spectra in figure 7 show f −5/3 regimes at frequencies
lower than 0.003 Hz (wavelengths longer than 2.3 km) and at frequencies higher than
0.03 Hz (wavelengths shorter than 230 m). These two −5/3 regimes are separated by
a plateau.
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Figure 13. Same as figure 12 but for the RL episode.

The −5/3 power-law behaviour at small scales is expected from classical inertial-
range theories for three-dimensionally isotropic velocity turbulence (Kolmogorov
1941; Obukhov 1941a ,b) and three-dimensionally isotropic temperature turbulence
(Obukhov 1949; Corrsin 1951). The observed wavelength of the largest eddies in that
regime agrees well with the ‘isotropic cutoff’ wavelength λm = 4h (h being the altitude
above ground level) predicted by the simple Muschinski & Roth (1993) model. Of
course, λm can be only a rough approximation of the wavelength that separates the
isotropic from the anisotropic regime. In the real atmosphere, the transition from
three-dimensional to two-dimensional flow occurs gradually. Although it may well
be that the features with the horizontal wavelength λm were strongly squeezed in the
vertical direction and therefore strongly anisotropic, we cannot quantify the degree
of anisotropy based on our data. Regardless of the possible anisotropy, however,
λm = 4h appears to be a good approximation of the horizontal wavelength at which
the streamwise spectra show the transition from the plateau to the −5/3 power law
characterizing the small-scale turbulence.

The physics of the −5/3 power law at wavelengths longer than 2.3 km is less clear.
The low-frequency parts of the spectra represent quasi-two-dimensional velocity and
temperature fluctuations advected past the sensors by the horizontal wind. Spectra
following a −5/3 power law in the quasi-two-dimensional wavenumber regime have
previously been observed in the ocean (Ozmidov 1965) and in the atmosphere (e.g.
Gage 1979; Nastrom & Gage 1985) but their physical nature is still a matter of
debate.

Ozmidov (1965) suggested that in general there is a forward energy cascade,
transferring energy from the largest scales to the smallest scales. According to his
conceptual model, the spectral density varies like k

−5/3
1 (k1 being the wavenumber

in the streamwise direction) except within wavenumber bands of intensified energy
supply, where spectral ‘bumps’ and plateaux occur. Ozmidov (1965) identified three
sources of energy supply for oceanic motion: major atmospheric disturbances, inertial
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and tidal oscillations, and wind waves. In our case, gravity-wave breaking and Kelvin–
Helmholtz (KH) instability are two mechanisms through which kinetic energy from
the horizontal flow could be converted into three-dimensional turbulent kinetic energy.
The wavelength of the fastest growing KH billows is about 7.5 times the thickness D

of the shear layer (e.g. Fritts & Rastogi 1985). If D is of order 100 m, then the length
of the dominating KH billows is of order 750 m. The horizontal wavelength of the
dominating gravity waves is 2πU/N , where 2π/N is the Brunt–Väisälä period, which
in the NBL is about 1 min, which leads to a wavelength of 600 m for a wind speed
of 10 m s−1. Both wavelengths are between 230 m and 2.3 km, i.e. within the spectral
plateau.

The idea that the energy generally cascades all the way down from the very large
scales to the dissipation scales is inconsistent with two-dimensional turbulence theory
(Kraichnan 1967), which requires an inverse cascade. A forward cascade, however,
is consistent with the theory of gravity-wave breaking. Lilly (1983) investigated the
ratio of the forward and inverse energy transfer rates and concluded that “the upscale
escape of only a few percent of the total energy released by small-scale turbulence
is apparently sufficient to explain the observed mesoscale energy spectrum of the
troposphere”. Recently, Cho & Lindborg (2001) and Lindborg & Cho (2001) analysed
aircraft measurements collected in the upper troposphere and lower stratosphere and
found evidence that in the quasi-two-dimensional, mesoscale regime between 10 km
and 100 km the energy is cascaded to smaller scales, not to larger scales as predicted
by two-dimensional turbulence theory. Also the recent quasi-geostrophic two-level
model simulations by Tung & Orlando (2003) support the notion of an energy source
at very large scales but do not support the existence of an inverse cascade that would
have to be fed by an energy source at small scales. The Tung & Orlando (2003)
analysis, however, has to some extent been challenged by Smith (2004). See also the
reply by Tung (2004).

Although we present no positive evidence for the forward cascade here, in our case
a forward cascade appears to be a more natural explanation than the idea that the
entire mesoscale spectrum would be generated and maintained by energy supply at
scales of order 1 km.

7.2. Classical spectra and intermittency spectra

As shown in § 6, our NBL observations of the ‘classical’ turbulence spectra Suu(f )
and Sθθ (f ) and of the ‘intermittency spectra’ Sxx(f ), Syy(f ), and Szz(f ) are all
characterized by plateaux at intermediate frequencies and by power-law roll-offs at
frequencies higher than 0.03 Hz, i.e. at wavelengths shorter than 230 m.

While the plateaux in the classical spectra separate small-scale turbulence from
large-scale turbulence, the plateaux in the intermittency spectra may be seen
as separating small-scale intermittency from large-scale intermittency. Small-scale
intermittency is the random variability of the ‘turbulence parameters’ εr , χr , and
(C2

θ )r in the three-dimensional regime, while large-scale intermittency is the random
variability of εr , χr , and (C2

θ )r in the quasi-two-dimensional regime.
That the outer scale L is relevant for the small-scale intermittency statistics was

hypothesized with great intuition by Kolmogorov (1962) and Obukhov (1962), and our
observations support their view. However, Kolmogorov (1962) and Obukhov (1962)
say nothing about large-scale intermittency. Figures 12 and 13 show clearly that
on the low-frequency side of the plateaux, the spectral densities in the intermittency
spectra increase with decreasing frequency, or with increasing length scales. Therefore,
intermittency statistics like σx , σy , σz, ρxy , and ρxz vary with the sample size, implying
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that any small-scale intermittency model is necessarily an incomplete description of
atmospheric intermittency. The larger the sample, i.e. the wider the p.d.f.s of εr , χr ,
and (C2

θ )r , the closer to 1 the correlation coefficients ρxy and ρxz become.

7.3. The f −1 law and the intermittency exponents

While, as expected from classical theory, Suu(f ) and Sθθ (f ) drop off like f −5/3 at high
frequencies, the intermittency spectra Sxx(f ), Syy(f ), and Szz(f ) decrease like f −1. In
the following, we offer a simple explanation for the f −1 law.

As described in § 2.2, Kolmogorov (1962) and Obukhov (1962) hypothesized that
the variance of the logarithm of the locally averaged energy dissipation rate, εr (where
r is the linear dimension of the averaging volume) increases with decreasing r as

σ 2
x = A + µ ln

L

r
. (7.1)

Therefore, the increment dσ 2
x is given by

dσ 2
x = −µ

dr

r
. (7.2)

Since σ 2
x may be written as an integral of the intermittency spectrum Sxx(f ), we have

dσ 2
x = Sxx(f ) df, (7.3)

such that

Sxx(f ) = −µ

r

dr

df
. (7.4)

With Taylor’s hypothesis, U = rf , we obtain

Sxx(f ) = µf −1 (7.5)

and, correspondingly, for the scalar intermittency spectrum,

Syy(f ) = µθf
−1. (7.6)

That is, we have a theoretical explanation for the f −1 power law observed in
the intermittency spectra, and the constants of proportionality turn out to be the
intermittency exponents µ and µθ themselves. Therefore, in the frequency regime
where the f −1 law is valid, µ is equal to f Sxx(f ) and can be directly obtained from
figures 12(b) and 13(b). We find µ ≈ 0.15 and µθ ≈ 0.3 in the NBL as well in the
RL episodes. These results agree within a factor of two with values reported earlier
and as reviewed by Sreenivasan & Kailasnath (1993). Note that in their review,
Sreenivasan & Kailasnath (1993) discuss spectra and autocovariance functions of εr

but they do not consider spectra or autocovariance functions of the logarithm of εr .
Using one of the evaluation methods described by Sreenivasan & Kailasnath

(1993), Frehlich et al. (2004) find µ ≈ 0.5 and µθ ≈ 0.6 from the data of the NBL
episode. Frehlich et al.’s µ is twice as large as the value 0.25 that is considered quasi-
universal by Sreenivasan & Kailasnath (1993). It has to be kept in mind, however,
that practically all previously reported intermittency exponents have been measured
either in the laboratory or in the atmospheric surface layer. In other words, very little
is known about the intermittency exponents in the atmosphere in the stably stratified
surface layer or above the surface layer.
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7.4. The power laws of the conditionally averaged temperature structure parameters

In § 3.1, we have shown that if (C2
θ )r and εr are jointly lognormally distributed, then

the conditional average 〈(C2
θ )r |εr〉 for a specified value of εr is proportional to εδ

r ,
where the exponent is δ = ρxyσy/σx −1/3 or, alternatively, δ = ρxzσz/σx; see equations
(4.8) and (4.12), respectively. Figures 8–11 show that the theoretical power-law models
for 〈(C2

θ )r |εr〉 agree quite well with the empirical conditional averages drawn from the
four ensembles ‘all’, NBL, RL, and AD, respectively. At the tails of the εr distributions,
the empirical conditional averages are typically smaller than the respective theoretical
model. The reason is that mean values of a lognormally distributed population are
negatively biased, and the bias increases with decreasing population size. Therefore,
the 〈(C2

θ )r |εr〉 bias has the largest magnitude in the tails of the εr population.
Figures 8–11 and table 1 show that δ is smaller (closer to 1/3) for the constant-

altitude episodes NBL and RL and larger (closer to 2/3) for the episodes ‘all’ and
AD, which contain samples from a wide variety of altitudes. This is consistent with
the observation that the larger the ensemble size, the more closely the correlation
coefficients ρxy and ρxz approach the value 1.

8. Summary and conclusions
Ten hours of high-resolution, kite-borne turbulence measurements in the lowest

500 m of the night-time troposphere over land have been analysed. Frequency spectra
Suu(f ) and Sθθ (f ) of the wind speed and temperature fluctuations and frequency
spectra Sxx(f ), Syy(f ), Szz(f ) of the logarithms of local dissipation rates and local
temperature structure parameters have been presented. In addition, p.d.f.s and joint
p.d.f.s of local dissipation rates, εr, and local temperature structure parameters, (C2

θ )r ,
and conditionally averaged (C2

θ )r for specified values of εr have been evaluated. The
main results are as follows:

(1) The ‘classical’ spectra Suu(f ) and Sθθ (f ) show two −5/3 regimes which are
separated by a platea. The high-frequency −5/3 regimes characterize three-dimen-
sional, Kolmogorov-type small-scale turbulence; the low-frequency −5/3 regimes
represent quasi-two-dimensional mesoscale motion, probably gravity waves. In ‘area-
preserving’ representation, a deep spectral gap separates the two −2/3 regimes. The
spectral plateau observed in the NBL comprises streamwise wavelengths between
230 m and 2.3 km.

(2) The ‘intermittency spectra’ Sxx(f ), Syy(f ), Szz(f ) also show plateaux separating
two regimes in which the spectral densities decrease with increasing f . The plateaux
in the intermittency spectra appear at the same frequencies as in the classical
spectra. In this paper, the small-scale (high-frequency) variability in the intermittency
spectra is referred to as small-scale intermittency, while the large-scale (low-frequency)
variability in the intermittency spectra is called large-scale intermittency.

(3) At high frequencies, Sxx(f ), Syy(f ), Szz(f ) decrease proportionally to f −1. It is
analytically shown that Sxx(f ) = µf −1 follows from Kolmogorov’s (1962) lognormality
hypothesis, σ 2

x = A + µ ln(L/r). That is, the (small-scale) intermittency exponents µ

and µθ can be empirically determined from plots of f Sxx(f ) and f Syy(f ), respectively.
(4) Conditional averages 〈(C2

θ )r |εr〉 as functions of εr tend to be proportional to
εδ

r , where the ‘logarithmic slope’ δ varies with the statistical ensemble. From four
different ensembles, slopes between 0.38 (close to 1/3) and 0.72 (close to 2/3) are
obtained. The two ensembles in which data were taken from a single altitude provided
the smallest slopes, while the two ensembles that contained data from all altitudes
provided the largest slopes. Two theoretical models, both of which provide power laws
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for 〈(C2
θ )r |εr〉, have been developed. The first model, referred to as the ‘small-scale

intermittency model’, assumes that (C2
θ )r and εr are jointly lognormally distributed

and leads to δ = ρxyσy/σx − 1/3, where σx and σy are the standard deviations of the
logarithms of εr and χr , and ρxy is the correlation coefficient between the logarithms
of εr and χr . With the assumptions ρxy ≈ 2/3 and σy/σx ≈ 1 (Antonia & Van Atta
1975), the small-scale intermittency model leads to δ = 1/3. An alternative model,
referred to as the ‘large-scale intermittency model’, has been constructed on the
basis of heuristic mixing-length arguments. With some not too restrictive additional
assumptions, it leads to δ = 2/3.
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Appendix A. Conditional averages of jointly normally distributed variables
Consider the joint probability density function (p.d.f.) of two jointly normally

distributed, zero-mean, unity-variance variables X and Y :

pXY (X, Y ) =
1

2π
√

1 − ρ2
exp

{
−X2 − 2ρXY + Y 2

2(1 − ρ2)

}
(A 1)

(Parzen 1960, p. 357), where ρ is the correlation coefficient of X and Y .
Now, let X be the (natural) logarithm of another random variable, x, such that

X =
ln(x/x0)

σX

, (A 2)

where x0 is chosen such that 〈X〉 = 0, as was assumed. Correspondingly,

Y =
ln(yy0)

σY

. (A 3)

Here, σX and σY are the standard deviations of ln(x/x0) and ln(y/y0), respectively.
If the joint p.d.f. pXY (X, Y ) of X and Y is jointly normal, then, by definition,

pxy(x, y) (the joint p.d.f. of x and y) is jointly lognormal. The two joint p.d.f.s are
connected through

pXY (X, Y ) dX dY = pxy(x, y) dx dy. (A 4)

Therefore,

pxy (x, y) =
1

x0σXeσXX

1

y0σY eσY Y
pXY (X, Y ) . (A 5)

Now, consider the conditional average of xayb for a specified value of x, where a

and b are real numbers:

〈xayb|x〉 ≡

∫ ∞

0

pxy(x, y) xayb dy∫ ∞

0

pxy(x, y) dy

= xa〈yb|y〉. (A 6)
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The integrations have to be performed between 0 and ∞ because lognormality of x

and y implies that neither x nor y can assume negative values. The integrations can
be conveniently carried out in logarithmic coordinates. With

yb = ebσY Y yb
0 (A 7)

and

dy = y0σY eσY Y dY, (A 8)

we find ∫ ∞

x=0

pxy(x, y)yb dy =
yb

0

x0σX

e−σXX

∫ ∞

Y=−∞
ebσY Y pXY (X, Y ) dY. (A 9)

The remaining integral is of the form∫ ∞

−∞
exp(−αY 2 + βY ) dY =

√
π

α
exp

(
β2

4α

)
, (A 10)

where

α =
1

2(1 − ρ2)
(A 11)

and

β = bσY +
ρ

1 − ρ2
X. (A 12)

Therefore,

∫ ∞

x=0

pxy(x, y)yb dy =
√

2π(1 − ρ2)
yb

0

x0σX

e−σXX exp

[
1 − ρ2

2

(
bσY +

ρ

1 − ρ2
X

)2
]

.

(A 13)

This leads to 〈
yb|x

〉
= yb

0 exp

[
1 − ρ2

2
b2σ 2

Y

](
x

x0

)ρbσY /σX

. (A 14)

With 〈xayb|x〉 = xa〈yb|x〉, we find

〈xayb|x〉 = yb
0 exp

[
1 − ρ2

2
b2σ 2

Y

]
xa

(
x

x0

)ρbσY /σX

. (A 15)

That is, if x and y are jointly lognormal, then 〈xayb|x〉 as a function of x is a power
law,

〈xayb|x〉 = cxδ, (A 16)

with the coefficient

c = x
−ρbσY /σX

0 yb
0 exp

[
1 − ρ2

2
b2σ 2

Y

]
(A 17)

and the exponent, or ‘logarithmic slope’,

δ = a + ρb
σY

σX

. (A 18)
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Appendix B. Relationships between variances and correlation coefficients of the
logarithms of εr , χr , and (C2

θ )r

Consider the random variable

z = ax + by, (B 1)

where a and b are constant real numbers and x and y are zero-mean random variables
with a correlation coefficient

ρxy =
〈xy〉
σxσy

, (B 2)

where σ 2
x ≡ 〈x2〉 and σ 2

y ≡ 〈y2〉 are the variances of x and y, respectively.
By definition, the correlation coefficient of x and z is

ρxz =
〈xz〉√

〈x2〉 〈z2〉
=

a
〈
x2

〉
+ b 〈xy〉√

〈x2〉
(
a2 〈x2〉 + 2ab 〈xy〉 + b2 〈y2〉

) , (B 3)

which gives

ρxz =
a + bρxyσy/σx√

a2 + 2abρxyσy/σx + b2σ 2
y /σ 2

x

. (B 4)

In addition, we can express the variance σ 2
z ≡ 〈z2〉 in terms of σx and σy:

σ 2
z = a2σ 2

x + 2abρxzσxσy + b2σ 2
y . (B 5)

Now, consider the case where

x = ln
εr

εr

, (B 6)

y = ln
χr

χr

(B 7)

and

z = ln

(
C2

θ

)
r(

C2
θ

)
r

. (B 8)

Here, εr , χr , and (C2
θ )r are the ‘geometric mean values’ (Obukhov 1962, p. 79) of

εr , χr , and (C2
θ )r , respectively, such that x, y, and z are indeed zero-mean variables.

Through the Obukhov–Corrsin relation,(
C2

θ

)
r
= γ ε−1/3

r χr , (B 9)

we find

a = − 1
3

(B 10)

and

b = 1. (B 11)

This leads to

ρxz =
− 1

3
+ ρxyσy/σx√

1
9

− 2
3
ρxyσy/σx + σ 2

y /σ 2
x

(B 12)

and

σ 2
z = 1

9
σ 2

x − 2
3
ρxyσxσy + σ 2

y . (B 13)
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These two equations, (B 12) and (B 13), relate five quantities with each other: the
three standard deviations σx , σy , and σz, and the two correlation coefficients ρxy and
ρxz. Three of these five, namely σx , σz, and ρxz, can be measured with fine wires
operating in the inertial range. The other two, σy and ρxy , can be directly measured
only if the dissipation scales are resolved. But σy and ρxy can still be retrieved from
inertial-range measurements of σx , σz, and ρxz. From y = (z − ax)/b we find

σ 2
y =

a2

b2
σ 2

x − 2
a

b2
ρxzσxσz +

1

b2
σ 2

z (B 14)

and

ρxy =
−(a/b)σ 2

x + (1/b)ρxzσxσz

σx

√
(a2/b2)σ 2

x − 2(a/b2)ρxzσxσz + (1/b2)σ 2
z

. (B 15)

With a = −1/3 and b = 1, this leads to

σ 2
y = 1

9
σ 2

x + 2
3
ρxzσxσz + σ 2

z (B 16)

and

ρxy =
σx + 3ρxzσz√

σ 2
x + 6ρxzσxσz + 9σ 2

z

. (B 17)

Note that in this Appendix, no assumptions on the p.d.f.s or joint p.d.f.s of x, y,
and z, or of εr , χr , and (C2

θ )r , have been made.
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